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Abstract—The detection of the small object has been 

challenging because of the limitation of the property of the 
convolutional neural network. For this project, I tried two 
methods to improve the performance of small objects detection. 
The first method is upscaling or improving the details of the image 
by using the concept of super-resolution. The second method is the 
process of performing prediction over small slices of the original 
image and then merging predictions from all sliced images on the 
original image. To detect small objects, I used the DOTA dataset 
[12] which contains aerial images. For the super-resolution 
method, I used the Efficient Sub-pixel Convolutional Neural 
Network (ESPCN). With these methods, I could get 27.5% mAP, 
46.4% mAP_50, 28.0% mAP_75 from 15.7% mAP, 26.3% 
mAP_50, 15.6% mAP_75 without any methods.  
 

Index Terms—Object detection, Super-resolution, Slicing 
images 

I. INTRODUCTION 

Overall, the object detection problem has been researched a 
lot after the development of the Convolution neural network. 
While the performance on medium and large-size objects has 
been increased, the detection of small objects has been 
challenging, especially in remote sensing images. The low 
resolution and simple shape of most of the small objects caused 
poor performance on small object detection. For small objects 
in remote sensing images, just a few pixels represent the whole 
object. With a few pixels that represent the whole object, it is 
difficult to identify and detect the object.  

II. DESCRIPTION 

A. Convolution neural network 
Most of the object detection algorithms are based on 

Convolution neural networks (CNNs). The CNNs can create 
low-level abstractions of the image. Then, the low-level 
abstractions such as lines and circles are combined to detect 
objects that we want. This is a very powerful property to detect 
the object. However, this can also be a problem to detect small 
objects. As you can see the figure 1, this network has several 
convolution layers and pooling layers that affect to reduce the 
resolution of the image. This makes the resolution of the 
 
 

original image down to ~30 x 30 resolution. [10] The features 
of the small object that are extracted on the first layer easily 
disappear passing the remained layers and cannot reach 
detection and classification steps. Due to this property of the 
CNNs, small object detection has been challenging than other 
medium and large objects. 

  

 
Fig. 1.  Structure of the CNNs. [1] 
 

The main problems of small object detection are as follows: 
• A small object has a few pixels that represent the whole 

object. 
• The features of the small object extracted on the first 

layers disappear passing the remained layers. 
 

As I could check the problems of the small object detection, I 
realized that it is very important to upscale the resolution of the 
image making the features of the small object to be extracted 
more.  

 
For these problems, I used two methods. First, I tried to 

upscale the resolution of the image. Simple upscaling is a way 
that stretches the low-resolution image onto the larger image. 
To be a higher resolution image, the low-resolution image is 
interpolated by copying and repeating pixels in neighbors. 
However, normally, this method doesn’t have good results. To 
improve the resolution of the image and get better results, I tried 
the super-resolution method instead of this simple upscaling. 
For this super-resolution method, I used the Efficient Sub-pixel 
Convolution Neural Network (ESPCN). Second, I tried to get 
predictions over sliced images from the original image and then 
merge the predictions on the original image.    
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III. RELATED WORK 

A. Super-Resolution 
Single image super-resolution is an important method in 

image processing to recover a high-resolution image from its 
corresponding low-resolution image. There are several super-
resolution models based on deep neural networks. For instance, 
Super-Resolution Convolutional Neural Network (SRCNN) 
[4], Fast Super-Resolution Convolutional Neural Network 
FSRCNN) [5], the efficient sub-pixel convolutional neural 
network (ESPCN). The SRCNN [4] and FSRCNN [5] based on 
the convolutional neural network have some weaknesses. These 
CNN approaches must use interpolation methods such as 
bicubic interpolation. Moreover, these approaches use the up-
sampled low-resolution image to apply the convolutional neural 
network. This method causes increasing computational 
complexity and memory cost. [2] To avoid these problems, I 
used the ESPCN method that adds an efficient sub-pixel 
convolutional layer to the CNNs.  

 

B. An Efficient Sub-Pixel Convolutional Neural Network 
The Efficient Sub-Pixel Convolutional Neural Network 

(ESPCN) upscales the resolution at the end of the network. [2] 
In ESPCN, the upscaling step is applied in the last layer. For 
this reason, the low-resolution image can be fed to the network 
unlike the SRCNN [4] and FSRCNN [5]. With this benefit, the 
ESPCN does not need to use the interpolation method. 
Moreover, the reduced input image size can make the model use 
a smaller kernel size that is used to extract features. I can get 
better efficiency by the reduced computational complexity and 
memory cost. [2] 

 
1) Network Structure 

ESPCN has several convolutional layers that obtain 
feature maps of the input images and an efficient sub-pixel 
convolutional layer that recovers the output image. Usually, 
the network has three convolutional layers and a sub-pixel 
convolution layer.  
 

 
Fig. 2.  ESPCN model. [3] 
 

The image passes the first layer that has a convolutional layer 
with 64 filters and the kernel size of 5 × 5, followed by a tanh 
activation layer. Then it passes the second layer that has a 

convolutional layer with 32 filters and the kernel size of 3 × 
3, followed by a tanh activation layer. Lastly, it passes the 
third layer that has a convolutional layer with the fixed 
number of output channel C × r × r and the kernel size of 3 
× 3. It is applied the sub-pixel shuffle function to make the 
output image will have the shape [B, C, r ×  N, r ×  N], 
followed by a sigmoid activation layer. [3] I may say that the 
super-resolution is an estimation of how similar a high-
resolution image (HR) 𝐼!" given by a low-resolution image 
(LR) 𝐼#" that is downscaled from the original Image 𝐼$" and 
the original Image 𝐼$" . The 𝐼#"  and 𝐼$"  have 𝐶  channels. 
Respectively, they can be represented as 𝐻 ×𝑊 ×
𝐶	and	𝑟𝐻 × 𝑟𝑊 × 𝐶. [2] 

 
2) Sub-pixel Convolution 

Convolution with a stride of %
&
 in the low-resolution space 

with a filter 𝑊' of size 𝑘' with weight spacing %
&
 can activate 

different parts of 𝑊' for the convolution. [2]  
 

𝐼!" = 𝑓#(𝐼#") = 𝒫𝒮(𝑊# ∗ 𝑓#(%(𝐼#") + 𝑏#) 
 

The periodic shuffling operator (𝒫𝒮) make the 𝐻 ×𝑊 ×
𝐶 ∙ 𝑟) tensor to a tensor of shape 𝑟𝐻 × 𝑟𝑊 × 𝐶.  

 

 
Fig. 3.  Operation of pixel shuffling. [3] 
 

As you can see in figure 3, 𝑟 × 𝑟 square feature maps on 
multiple channels are combined into a single channel in a 
high-resolution image. Thus, each pixel on feature maps can 
be equivalent to the sub-pixel on the generated output image. 
[3] The interpolation method is indirectly included in the 
convolutional layers so we can use a low-resolution image on 
the first convolution layer unlike other SRCNN [4] and 
FSRCNN [5]. 
 
3) Loss Function 

To measure the difference between the SR images and the 
HR original images, the mean squared error (MSE) is used. 
 

ℓ(𝑊%:# , 𝑏%:#) =
1

𝑟)𝐻𝑊667𝐼+,-$" − 𝑓+,-# (𝐼#")9
)

&.

+/%

&$

+/%

 

 



 
 

3 

 
Fig. 4.  Super-resolution examples, from left to right: Original, ESPCN, and 
Pixel replication. From top to bottom: small vehicle, ship, plane, and small 
vehicle. 
 

C. Faster RCNN 
Faster RCNN [6] has two parts. The first part is a deep 

convolutional network that proposes regions. The second part 
is a detector that uses the proposed regions. The region proposal 
network (RPN) acts as the ‘attention’ of this network. [6] 

 

   
Fig. 5.  Faster RCNN. [6] 

1) Region Proposal Networks 
A region Proposal Network (RPN) is a fully 

convolutional network that creates proposals with various 
scales and aspect ratios. [7]  
 

 
Fig. 6. Region Proposal Network (RPN). [6] 
 

2) Anchor 
As you see in figure 6, the feature map from the last 

convolution layer is sliced by a rectangular window of size n 
× n. k region proposals are generated each window. Each 
region proposal is proposed according to an anchor box that 
has a scale and aspect ratio. With these anchor boxes, the 
model can be offered a scale-invariant object detector as a 
single image at a single scale is used. This is useful to avoid 
using multiple images or filters.  

 

D. Fine Tuning 
Fine-tuning takes a trained model for a given task and makes 

the model perform a similar task. [11] Without training the 
model from scratch to get a feature extraction, using a pre-
trained model can give us the feature extraction that happens in 
the top layer of the model. With the fine-tuning method, I can 
save time and get better results because the pre-trained model 
allows me to have a model that is trained with more data. 

 

E. Sliced inference 
 I tried to make the patches on the images for the prediction 
part. I assumed that detecting in a small area on the images 
helps to detect objects better. This idea was come out in my 
experience. I usually see the small area to check small objects 
with a hand magnifier. I could find code for this method: 
https://github.com/obss/sahi/blob/main/demo/slicing.ipynb 

IV. EVALUATION 
To evaluate the performance of two methods. I tried 3 types 

of experiments. Originally, I planned to make an end-to-end 
model that includes upscaling images and sliced inference. 
However, I could not approach this trial because of the limits of 
the memory and the computational constraints. I changed the 
trial making two parts of the process. First, I had a process that 
makes upscaled images. Second, I had a process that get 
predictions with images from the first process. With this 
process I could tried experiments without any problems. 
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A. Data Set 
For this project, I used the DOTA data set [12] version1.0. 

DOTA includes large-scale aerial images for object detection. 
To get the images, different sensors and platforms are used. The 
size of an image in DOTA data is in the range of 800×800 to 
20,000 × 20,000 pixels. DOTA-v1.0 contains 15 common 
categories, 2,806 images and 188, 282 instances. The 
proportions of the training set, validation set, and testing set in 
DOTA-v1.0 are 1/2, 1/6, and 1/3, respectively. [12] 

 
 For these experiments, I used the pre-trained Faster-RCNN 

[6] model. However, it has a problem to do fine-tuning the 
model with the DOTA dataset [12]. There were two main 
reasons for this problem. First, the pre-trained model is trained 
on medium and large-scale objects. Second, the input images 
should be rescaled to small size, e.g. (1333 × 800). Rescaling 
the size of an image causes loss of the information that the 
image has. Moreover, it causes that the small objects in the 
image cannot be visible and the model cannot have a chance to 
detect the small objects. To solve this problem, I used random 
crop in the data preprocessing part. This random crop method 
can make the model get images without losing the small objects. 

B. Comparing results of training between using the 
upscaled images and original images 
First, I trained models with two conditions to check the 

effects of the upscaling of images. The first one is to train with 
original images that are not applied super-resolution method. 
The second one is to train with upscaled images that are applied 
super-resolution method. As you see in table 1, in two 
conditions, the model trained with upscaled images has better 
results. However, this difference is not big enough. 

 
1) Training with the original image – 1X 

 

 
Fig. 7. Loss-curve on the original images. 
 

 
Fig. 8. Accuracy on the original images. 

 
1) Training with upscaled images – 2X 

 

 
Fig. 9. Loss-curve on the upscaled images – 2X. 
 

 
Fig. 10. Accuracy on the upscaled images – 2X. 
 

Train Loss Accuracy 

1x-Image 0.45222 94.87% 

2x-Image 0.42427 95.19% 

Table. 1. Loss and Accuracy on DOTA-v1.0 train set with Fast RCNN  
 
As you can see the table 2, I got unexpected results of mean 
average precision (mAP). Even the model that trained with 
upscaled images has better accuracy on the train set, the actual 
results on the validation set have worse mean average precision.  
With this experiment, I could not check the effect of the 
upscaled images in object detection.  
 

Validation mAP mAP_50 mAP_75 mAP_S mAP_M mAP_L 

1x-Image 15.7% 26.3% 15.6% 2.8% 12.4% 30.1% 

2x-Image 10.9% 18.3% 10.8% 0.1% 3.9% 14.4% 

Table. 2. Results on DOTA-v1.0 validation set with Fast RCNN. – without 
sliced images inference.  
 
Leaving these results behind, I tried another experiment. In this 
experiment, I tried sliced inference. In this case, I could check 
the effect of prediction by patched images. As you see the table 
3, in both conditions, the results have shown improvements, 
especially, the model trained with upscaled images has 
improved more than 100%. Furthermore, I tried to see actual 
predictions on the test set and compare them with the effects of 
those methods. In random test images, I could find the effect of 
the sliced inference. As you see in figures 11 and 12, You can 
find a big difference between the predictions without sliced 



 
 

5 

inference and with sliced inference. 
 

Validation mAP mAP_50 mAP_75 mAP_S mAP_M mAP_L 

1x-Image 26.9% 45.4% 27.1% 8.2% 27.1% 39.8% 

2x-Image 27.5% 46.4% 28.0% 3.4% 21.7% 32.2% 

Table. 3. Results on DOTA-v1.0 validation set with Fast RCNN. – with sliced 
images inference. 
 

 
Fig. 11. Prediction on the test image without sliced inference. 
 

 
Fig. 12. Prediction on the test image with sliced inference. 
 
Also, I tried to find the effect of upscaling the image by super-
resolution. In this trial, I tried two kinds of images. First, I check 
the result on a low-resolution image. As you see in figures 13 
and 14, super-resolution (ESPCN) helps to detect small objects.  
 

 
Fig. 13. Prediction on the low-resolution test image with sliced inference. – 
without upscaled by super-resolution. 
 

 
Fig. 14. Prediction on the low-resolution test image with sliced inference. – with 
upscaled by super-resolution. 
 
Also, as you can see in figure 15, I could get better results with 
high-resolution images 
 

 
Fig. 15. Prediction on the high-resolution test image with sliced inference. – 
Left: without super-resolution, Right: with super-resolution. These images are 
cropped to show the difference. You can check the full image in Supplemental 
Material  
 
 
Finally, I wanted to check the difference between two models 
that trained without super-resolution and with super-resolution 
respectively and detect with the upscaled image.  
 

 
Fig. 16. Prediction on the high-resolution test image with sliced inference. – 
Left: trained without super-resolution but detect with the upscaled image, 
Right: with super-resolution. These images are cropped to show the difference. 
You can check the full image in Supplemental Material  
. 
 
As you see the figure 6, both models predict small objects well, 
however, the left image that is from trained without super-
resolution shows bad classification on objects. This model 
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classifies the objects as a ship. Unlike the left image, the right 
image shows proper classification of the objects. This model 
classifies the objects as the small vehicle.  
 With these experiments, I could check the effect of the super-
resolution method and the sliced inference method.  

V. CONCLUSION 
In this project, I tried to improve the performance of small 

object detection with two methods. With these methods, I could 
enhance the performance of the object detection more than 
100% especially on the small objects. When the models predict 
the objects without sliced inference, the model trained with 
images that are not applied super-resolution got better results. 
However, if model used sliced inference, the model trained with 
upscaled images by super-resolution could get better results. I 
may need to research more about this result. The results show 
that using both methods may get a synergy effect. I may need 
to change the anchor size and the IoU scale to get better results 
when the trained model is evaluated. For better improvements 
on the object detections, I may need to try getting more data set 
by doing data augmentation. To get better results, more data set 
is a key point. My future work will focus on applying this 
method in the real world. 
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Supplemental Material  
 

 
Fig. 17. Prediction on the high-resolution test image with sliced inference. – without super-resolution – image size: 7582 × 4333 
 

 
Fig. 18. Prediction on the high-resolution test image with sliced inference. – with super-resolution – image size: 15164 × 8666 
 



 
 

8 

 
Fig. 19. Prediction on the high-resolution test image with sliced inference. – trained without super-resolution but detect with the upscaled image – image size: 
15164 × 8666 
 

 
Fig. 20. Prediction on the high-resolution test image with sliced inference. – trained with super-resolution but detect with the upscaled image – image size: 
15164 × 8666 
 


