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 Abstract—We investigate the use of Autoencoders for 
reducing the dimensionality of KMNIST digits data set to 
improve classification performance. We compare the 
classification performance to the use of Convolutional 
Neural Networks (CNNs). We further introduce an 
information theory regularizer on the autoencoder. We 
force the autoencoder to learn latents on a 3d swiss roll 
prior and decode the images. Lastly, we introduce a 
Gaussian and a Gaussian Mixture Model Prior to 
investigate its effect on unsupervised clustering of the latent 
space. This work is presented as the final project for EEL6814 – 
Deep Learning Course.  
 

I. INTRODUCTION 

A. Dimensionality reduction  

The age of abundance of high resolution high dimensional 
data calls for a method to deal with it. Learning on high 
dimensional data can be very computationally taxing and can 
lead to overfitting of training data. Dimensionality reduction 
methods aim to mitigate these problems by preserving the most 
relvant information in the data needed to learn accurate 
predictive models. It helps in reducing redundant features by 
extracting a lower dimensional representation of the data that is 
more essential and more interpretable. It can also be used in 
visualization if the lower dimensional representation is 2 or 3 
dimensional. 

B. Autoencoder (AE) with a bottleneck as an architecture for 
dimensionality reduction 

An autencoder is a type of artificial neural network network 
that aims at learning lower dimensional latent codings from 
data. Two networks are simalteneously trained; the encoder and 
decoder. The encoder transforms the data onto latent codings 
while the decoder tries to reconstruct the data from the codings. 
The loss function is given by the reconstruction error between 
the input of the encoder and the output of the decoder: ℒ =
|𝑥𝑥 − 𝑥𝑥|� . By learning to cipher and decipher the data, the 
autoencoder learns the essential part of the image. The latent 
codes are ‘denoised’ versions of the input data that for example 
facilitates classification [8]. 
 

AEs have variants that are tailored for different tasks. 
Regualrized AEs and variational AEs are good examples. 

II. METHODS 

A. Data Preparation 
We download the publicly available data set Kuzushiji-

MNIST (KMNIST) [1]. With advancement in deep learning and 
how well current classifiers work on the  MNIST data set, more 
complicated data set is need to benchmark performance. 
KMNIST is used as a replacement for the MNIST dataset 
(28x28 grayscale, 70,000 images). It consists of 10 classes each 
representing 10 characters of Hiragana, a Japanese writing 
system, see Fig. 1. The data set is divided into 60000 training 
samples and 10000 testing samples. We set aside 10% of the 
training set for model validation as the learning is done. 

 

B. Stacked Autoencoders 

We design an autoencoder network, which projects data to 
a subspace to obtain features that can be then used for 
classification. We use a stacked autoencoder has the 
architecture 800-400-XXX as the encoder and 400-800 as the 
decoder, where XXX is the latent space dimensions. Each layer 
is a fully connected layer. We use tanh activation function for 
the encoder hidden layers and linear activation for the latent 
space. As for the decoder we use ReLU activation and sigmoid 
for the final layer to produce pixel values between 0 and 1. 

 
 

 
Figure 1: The 10 classes of KMNIST, with the first column showing 

each character's modern hiragana counterpart. [1] 
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Figure 2: A standard autoencoder architecture 

C. MLP Classifier 
We use a fully connected multilayer perceptron with 3 

hidden layers with units [1000-500-500] with relu activations 
and softmax output for classification. We use categorical cross-
entropy as the training loss. 

D. Information Theoretic Learning (ITL) regularization 

Having an autoencoder that is penalized only on the 
reconstruction loss can lead to biasing the network to learn only 
mapping data points to very specific points on the latent space, 
i.e. the spatial structure of the space doesn’t have meaning. This 
bias leads to two main problems: first, learning a discontinuous 
latent space where if you sample a neighboring point to an 
encoded data point and pass it through the decoder you do not 
get a meaningful representation (a problem solved by 
variational autoencoders). Second, the distances between points 
do not necessarily mean similarity, which can make you lose 
the advantage of clustering. To solve this issue, we are 
imposing an Information Theoretic Learning (ITL) regularizer  
that computes the Cauchy-Schwarz divergence (CSD) of the 
latent code with respect to a prior distribution. This divergence 
is added to the lost function with some multiplier λ. 

ℒ = |𝑥𝑥 − 𝑥𝑥|�  +  𝜆𝜆 𝐶𝐶𝐶𝐶𝐶𝐶(𝑞𝑞(𝑧𝑧|𝑥𝑥) || 𝑝𝑝(𝑧𝑧)), 
where 𝑞𝑞(𝑧𝑧|𝑥𝑥) is the encoder and 𝑝𝑝(𝑧𝑧) is an imposed prior 
distribution on the latent space.  
a) Probability density estimation using prazen window 

We use Prazen Window method to estimate the probability 
density functions. The estimation is done by centering a 
Gaussian Kernel K𝜎𝜎(𝑥𝑥 − 𝑥𝑥𝑖𝑖) with size 𝜎𝜎 at each data point 𝑥𝑥𝑖𝑖  
and summing the Gaussians to estimate the PDF. The kernel 
size 𝜎𝜎 is an added hyperparameter that we optimize for. The 
more data points you include in your batch, the smaller the 
kernel size you need. 

𝑝̂𝑝(𝑥𝑥) =  
1
𝑁𝑁
�𝐾𝐾𝜎𝜎(𝑥𝑥 − 𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

. 

 
 
 
b) Renyi’s 2nd order entropy and crossentropy estimation  

      An important information theoretic learning metric is 
Renyi’s Entropy of a probability distribution 𝑝𝑝(𝑥𝑥). The second 
order entropy is given by 𝐻𝐻2(𝑋𝑋) =  − log∫ 𝑝𝑝2(𝑥𝑥)𝑑𝑑𝑑𝑑 and can 
be estimated using the prazen window method to be 
 

𝐻𝐻�2(𝑋𝑋) = − log
1
𝑁𝑁2��𝐾𝐾𝜎𝜎√2�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖� ≡  − log𝑉𝑉(𝑋𝑋)

𝑖𝑖𝑗𝑗

 . 

Similarly, the cross-entropy between two distributions can be 
estimated as 

𝐻𝐻�2(𝑋𝑋,𝑌𝑌) = − log
1

𝑁𝑁𝑋𝑋𝑁𝑁𝑌𝑌
��𝐾𝐾𝜎𝜎√2�𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑗𝑗�

𝑖𝑖𝑗𝑗
≡  − log𝑉𝑉(𝑋𝑋,𝑌𝑌) , 

where 𝑉𝑉2(𝑋𝑋) is the information potential and 𝑉𝑉2(𝑋𝑋,𝑌𝑌) is the 
cross-information potential. In terms of the information 
potentials, the Cauchy Schwartz divergence is given by  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑋𝑋|| 𝑝𝑝𝑌𝑌)   = log
𝑉𝑉(𝑋𝑋)𝑉𝑉(𝑌𝑌)
𝑉𝑉2(𝑋𝑋,𝑌𝑌)

. 

By minimizing the CSD, we enforce the model to maximize 
the entropy of the latent code distribution which helps  in 
spreading out the latents while at the same time minimizes the 
cross-entropy between the latent code and the prior 
distributions which makes latent codes fit the prior distribution 
better. 
c)  Unsupervised clustering of the latent codes using K-
means 

The k-means algorithm is an iterative technique that 
attempts to cluster data points into K separate non-overlapping 
subgroups, with each data point belonging to just one of these 
groups. It aims to make intra-cluster data points as comparable 
as feasible while maintaining clusters as distinct (far) as 
possible. It distributes data points to clusters so that the sum of 
the squared distances between them and the cluster's center is 
as little as possible. Within a cluster, the less variance there is, 
the more similar the data points are. 
We use k-means clustering on the latent codes to predict which 
data points belong to which classes. To match the clustering 
labels to the original labels, we evaluate the cluster-class 
pairings that maximizes the classification accuracy. 

III. RESULTS 

A. Classification results on the latent codes generated by a 
Stacked Autoencoder (SAE)  

a) 30 dimensional latent codes are optimal for classification 
using a Multilayer Perceptron (MLP) 

The idea is that by limiting the bottleneck size, we are 
reducing noise in the data and learning only the features 
essential for classification. Even though the autoencoder 
reconstruction loss will always be lower when you add more 
dimensionality into the bottleneck, the classification accuracy 
on the latent codes will eventually get worse since the network 
is overfitting the data.  



We experiment with different sizes and stop increasing the 
sizes when classification accuracy decreases, see table 1. 

10 20 30 35 40 50 
87.18% 90.97% 92.54% 92.41% 91.81% 91.81% 
Table 1: Classification accuracy using different number of bottleneck units 

b) Classification using the 30 dimensional latent codes 
outperforms classification using the full image 
dimensionality 

Now that we have established a proper number of latent 
codes (30), we can improve on the model predictions by adding 
batch normalization and 25% dropout on the nodes in the MLP 
classifier. This addition increases accuracy to 93.25%, see 
confusion matrix in Fig. 3.  

 
Figure 3 

c) Comparison with CNN classification performance on the 
same dataset 
Although the MLP classifier on the latent codes outperforms 
the MLP classifier on the full dimensional image (91.5%), the 
classification accuracy does not compete with the best 
performing CNN with 3 hidden layers we trained in project 1 
(96.5%). CNN is still better at capturing image details because 
it does not involve flattening of the  

 
Figure 4: Confusion matrix for CNN classification on the full image 

B. Enforcing a 3D swiss roll prior on the latent codes 

In order to enforce the minimization of the Cauchy-Schwarz 
divergence while maintaining low reconstruction error, we need 
to tune for the regularization parameter λ and the kernel size σ.  

For this experiment, we used a 3d swiss roll distribution for 
the prior. Throughout the paper, we use Adam optimizer with 
learning rate 10−3  and mini-batches of size 1000 to avoid 
extensive hyperparameters search. We chose a 1000 as a 
tradeoff between fast learning and preserving the underlying 
structure of the data in each batch. We used early-stopping 
based on the best validation loss to avoid overfitting.  
 
a) Effect of kernel size σ 

First, we tried to find the effect of the kernel size σ. In this 
experiment, we fix  λ = 10. We could notice that with higher 
kernel size, the latents failed to be close to the prior distribution.  

As seen in Figure 2, the higher kernel size makes the CSD 
divergence between input data distribution and the prior 
distribution to be smaller. With a fixed λ, this smaller order of 
magnitude in the CSD causes the MSE loss to dominate which 
leads to the model mainly learning reconstruction with little 
regard to the prior.  This inverse relation between kernel size 
and CSD can be viewed from the information potential 
equation. For these reasons, in figure 1 graphs (kernel size = 
100, 1000), the model fails to learn the swiss roll distribution 
and the latent codes form a shape closer to a sphere. 
 

 
Figure 5. 3dimensional latent space from top left to bottom right 

σ = 1, σ = 10, σ = 100, σ = 1000 on fixed λ = 10. 

 

 



b) Effect of regularization parameter λ 
 To find a best λ value, we fixed the kernel size 𝜎𝜎 = 1  based 
on the first experiment. The higher 𝜆𝜆  spreads out the latent 
codes on the prior didtribution removing the natural clustering 
in the dataset. It somehow over-enforces the prior on all the data 
classes. We achieve best clustering with λ = 0.1. In figure 8, we 
implement a linear walk along both directions of the 3d 
swissroll manifold. The walk shows smooth transitions 
between digits in the data set. 

C. Enforcing a Gaussian prior on the latent codes 
To encourage spread in the 3d latent space, we enforce a 

Gaussian prior on it, 𝑁𝑁(𝜇𝜇,𝜎𝜎). Gaussians impose a spread on the 
space centered around a mean. In order to facilitate clustering, 
we consider a Gaussian Mixture Model with 10 different 
Gaussians, same  (corresponding to the 10 classes). We first run 
the models with the same hyperparameters from the swiss-roll 
experiment. We further tuned to find the optimal kernel size 
𝜎𝜎 = 100 and 𝜆𝜆=0.1. We evaluate the clustering performance 
by applying applied k-means clustering algorithm (see 
methods). The results are reported in Table 2. Although adding 
a structure improved clustering accuracy as expected, the 
gaussian mixture prior did not perform better than a simple 
Gaussian, but not significantly. Further experiments are 
needed. Our preliminary interpretation is that some digits in 
KMNIST look very similar so they are closer in the latent space 
and forcing the dispersion in the GMM leads to a worse latent 
coding.  Figure 9 shows the 2d projections of the latent codes 
for the no prior AE, the simple gaussian prior and the GMM. 
Figures 10, 11 and 12 show confusion matrices for different 
priors. Confusion matrices and accuracy are calculated after 
mapping the labels produces by k-means clustering to labels 
that maximize accuracy.  

 
No prior Simple 

Gaussian 
N(0,1) 

Gaussian 
Mixture 

Model (10) 

Swiss roll 

40% 45.19% 44.24% 42% 
Table 2: Kmeans clustering classification (unsupervised) accuracy on 
different regularizers 

 

D. Computational cost of adding a regularization  
The CSD involves extra computation which was very slow 

to compute on a CPU. We used Colab GPU: Tesla P100. 
Time AE (no regularizer) AE + CSD  
Second 83 61 

 
 
 

 
Figure 7:3D latent space for λ = 0.01, 0.05, 0.1, 1, 10 , 10 (from top 

left to bottom right) 

 

Figure 8: Samples from a linear walk over the swiss-roll. Right to left 
is going along the linear direction of the manifold. Top to bottom is 

going along the rotating direction of the manifold. 

 
Figure 9: 2D projections of the 3D latent space for different priors. 

Colors given by k-means clustering (unsupervised). 

 



 
Figure 10 Confusion matrix for k-means clustering (unsupervised) 

without a prior 𝜆𝜆 = 0, accuracy 40% 

 
Figure 11: Confusion matrix for k-means clustering (unsupervised) 

for a simple Gaussian prior N(0,1), accuracy 45.19% 

 
Figure 12: Confusion matrix for k-means clustering (unsupervised) 

for Mixed Gaussian, accuracy 44.24% 

 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
[1] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical 

Learning. 
[2] J. Principe, N. Euliano and W. Lefebvre, Neural and adaptive systems. 

New York: Wiley, 2000. 
[3] “Understanding of Convolutional Neural Network (CNN) — Deep 

Learning", Medium, 2021. [Online]. Available: 
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-
neural-network-cnn-deep-learning-99760835f148. [Accessed: 24- Oct- 
2021]. 

[4] "GitHub - rois-codh/kmnist: Repository for Kuzushiji-MNIST, 
Kuzushiji-49, and Kuzushiji-Kanji", GitHub, 2021. [Online]. Available: 
https://github.com/rois-codh/kmnist. [Accessed: 22- Oct- 2021]. 

[5] A. Agarap, "Deep Learning using Rectified Linear Units (ReLU)", 2019. 
[6] D. Liu, "A Practical Guide to ReLU", Medium, 2021. [Online]. Available: 

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7. 
[Accessed: 27- Oct- 2021]. 

[7] K. Bajaj, D. Singh and M. Ansari, "Autoencoders Based Deep Learner for 
Image Denoising", Procedia Computer Science, vol. 171, pp. 1535-1541, 
2020. Available: 10.1016/j.procs.2020.04.164. 

[8] E. Santana, M. Emigh and J. C. Principe, "Information Theoretic-
Learning auto-encoder," 2016 International Joint Conference on Neural 
Networks (IJCNN), 2016, pp. 3296-3301, doi: 
10.1109/IJCNN.2016.7727620. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 
 
 

 


	I. Introduction
	A. Dimensionality reduction
	The age of abundance of high resolution high dimensional data calls for a method to deal with it. Learning on high dimensional data can be very computationally taxing and can lead to overfitting of training data. Dimensionality reduction methods aim t...
	B. Autoencoder (AE) with a bottleneck as an architecture for dimensionality reduction
	An autencoder is a type of artificial neural network network that aims at learning lower dimensional latent codings from data. Two networks are simalteneously trained; the encoder and decoder. The encoder transforms the data onto latent codings while ...
	AEs have variants that are tailored for different tasks. Regualrized AEs and variational AEs are good examples.

	II. Methods
	A. Data Preparation
	B. Stacked Autoencoders
	We design an autoencoder network, which projects data to a subspace to obtain features that can be then used for classification. We use a stacked autoencoder has the architecture 800-400-XXX as the encoder and 400-800 as the decoder, where XXX is the ...
	C. MLP Classifier
	D. Information Theoretic Learning (ITL) regularization
	Having an autoencoder that is penalized only on the reconstruction loss can lead to biasing the network to learn only mapping data points to very specific points on the latent space, i.e. the spatial structure of the space doesn’t have meaning. This b...
	a) Probability density estimation using prazen window

	We use Prazen Window method to estimate the probability density functions. The estimation is done by centering a Gaussian Kernel ,K-𝜎.,𝑥−,𝑥-𝑖.. with size 𝜎 at each data point ,𝑥-𝑖.  and summing the Gaussians to estimate the PDF. The kernel size...
	b) Renyi’s 2nd order entropy and crossentropy estimation

	By minimizing the CSD, we enforce the model to maximize the entropy of the latent code distribution which helps  in spreading out the latents while at the same time minimizes the cross-entropy between the latent code and the prior distributions which ...
	c)  Unsupervised clustering of the latent codes using K-means

	The k-means algorithm is an iterative technique that attempts to cluster data points into K separate non-overlapping subgroups, with each data point belonging to just one of these groups. It aims to make intra-cluster data points as comparable as feas...

	III. Results
	A. Classification results on the latent codes generated by a Stacked Autoencoder (SAE)
	a) 30 dimensional latent codes are optimal for classification using a Multilayer Perceptron (MLP)
	The idea is that by limiting the bottleneck size, we are reducing noise in the data and learning only the features essential for classification. Even though the autoencoder reconstruction loss will always be lower when you add more dimensionality into...

	We experiment with different sizes and stop increasing the sizes when classification accuracy decreases, see table 1.
	b) Classification using the 30 dimensional latent codes outperforms classification using the full image dimensionality

	Now that we have established a proper number of latent codes (30), we can improve on the model predictions by adding batch normalization and 25% dropout on the nodes in the MLP classifier. This addition increases accuracy to 93.25%, see confusion matr...
	c) Comparison with CNN classification performance on the same dataset

	B. Enforcing a 3D swiss roll prior on the latent codes
	In order to enforce the minimization of the Cauchy-Schwarz divergence while maintaining low reconstruction error, we need to tune for the regularization parameter  and the kernel size 
	For this experiment, we used a 3d swiss roll distribution for the prior. Throughout the paper, we use Adam optimizer with learning rate ,10-−3. and mini-batches of size 1000 to avoid extensive hyperparameters search. We chose a 1000 as a tradeoff betw...
	a) Effect of kernel size 

	First, we tried to find the effect of the kernel size . In this experiment, we fix   = 10. We could notice that with higher kernel size, the latents failed to be close to the prior distribution.
	As seen in Figure 2, the higher kernel size makes the CSD divergence between input data distribution and the prior distribution to be smaller. With a fixed , this smaller order of magnitude in the CSD causes the MSE loss to dominate which leads to th...
	b) Effect of regularization parameter 
	To find a best  value, we fixed the kernel size 𝜎=1  based on the first experiment. The higher 𝜆 spreads out the latent codes on the prior didtribution removing the natural clustering in the dataset. It somehow over-enforces the prior on all the d...

	C. Enforcing a Gaussian prior on the latent codes
	D. Computational cost of adding a regularization

	References

