

KMNIST Classification Problem

using Multi-Layer Perceptron

(MLPs) and Convolutional Neural

Networks (CNNs)

This work is presented as a project

for

EEL6814 – Deep Learning Course

at the University of Florida

Group Members

Gijung Lee

Mayar Shahin

KMNIST classification assesment using Multilayer

perceptron and Convolutional Neural Netwrks

Mayar Shahin

Physics department

University of Florida

mayar.shahin@ufl.edu

Gijung Lee

Electrical Engineering department

University of Florida

lee.gijung@ufl.edu

Abstract—This work is presented as a project for EEL6814 – Deep

Learning Course. Over the last few decades, deep neural

networks have proved very powerful in handling big data. In

pattern recognition, particularly image problems, deep

learning’s performance surpasses classical machine learning in

accuracy. The Multilayer Perceptron (MLP) and the

Convolutional Neural Network (CNN) are two of the most

popular deep learning architectures for classification. We

present the two networks’ performance to classify the Japanese

KMNIST data set. In this report, we test the performance of

different MLP and CNN architectures on the data set. We

further tune hyperparameters and investigate how different

parameters affect the classification efficiency.

I. INTRODUCTION

A. The Multilayer Perceptron (MLP)

 A multilayer perceptron (MLP) is a type of
of feedforward artificial neural network (ANN). The MLP
consists of an input layer, an output layer and at least
one hidden layers. Each layer has nodes which in general have
nonlinear activations. MLPs are fully connected meaning that
each node in one layer connects to every node in the following
layer through a weight. The weights are learned by the MLP
using an error back propagation algorithm [1].

There are a few hyperparameters involved in an MLP that
affect performance. First, we need to know the role of the
number of layers and the number of processing elements (PEs)
or units in a layer. The PE creates a discriminant function thus
making a decision boundary and allowing the network to
represent different classes. Therefore, more layers help the
MLP to classify easily with fewer numbers of PEs [2]. Second,
an important hyperparameter is the learning rate. A small
learning can get the learning stuck at a local minimum, while a
higher learning rate helps the MLP learns optimal weights
quickly but risks jumping around minima leading (instable
learning). We need to select the proper learning rate to reach a
global minimum.

B. Convolutional Neural Networks (CNNs)

The CNN is a neural network that has convolutional layers.
In the convolutional layers, a filter is used to extract the
features of the image. The filter is an 𝐿 × 𝐿 matrix that slides
over the image sequentially from left to right and from top to
bottom. The stride determines how many pixels will be moved
when the filter moves. The stride affects the size of the output.

After this process, the filter has 𝐿 × 𝐿 weights and an
output. The output is called a feature map. Each filter extracts

features from the output in the previous layer. To get different
features, we need multiple filters. As we have more layers, we
can extract more features in the data. However, this process
can lose edge pixel information. To solve this problem,
padding is used by adding pixels that have a value of 0 or 1 to
the sides of the input data [3]. Next step in a CNN is typically a
pooling layer, which serves in down-sampling the feature maps

by summarizing the sample with a patch. The job of
convolutional layers is to extract features of the input.
Afterwards we add one or more dense fully connected layers.
The job of the dense layers is to do the actual
classification/regression problem at hand.

II. METHODS

A. Data Preparation

We download the publicly available data set Kuzushiji-
MNIST (KMNIST) [1]. With advancement in deep learning
and how well current classifiers work on the MNIST data set,
more complicated data set is need to benchmark performance.
KMNIST is used as a replacement for the MNIST dataset
(28x28 grayscale, 70,000 images). It consists of 10 classes
each representing 10 characters of Hiragana, a Japanese writing
system, see Fig. 1. The data set is divided into 60000 training
samples and 10000 testing samples. We set aside 10% of the
training set for model validation as the learning is done.

B. Multi-Layer Perceptrons (MLPs)

To get optimal performance for classification, we used
2000 units in the first layer, 1000 units in the second layer, 500
units in the third layer, 250 units in the fourth layer. We
included dropouts and batch normalization layers to avoid
overfitting because this model was easily overfitted on the train
set with many layers and units.

C. Convolutional Neural Networks (CNNs)

Working on this data set, we fix some hyperparameters
before tuning the rest. Because we care about smaller details in

Figure 1: The 10 classes of KMNIST, with the first column showing

each character's modern hiragana counterpart. [1]

mailto:mayar.shahin@ufl.edu
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

these characters to get classification, we used convolutional
filters of 3x3 size with stride is 1. We enabled padding to
match input and output sizes. The pooling layer is of size 2x2,
with stride 2 and no padding. We set the layer to Maxpooling
because we care about detecting the brightest spots in the
image. A CNN architecture can be complex with multiple
tunable hyperparameters. Optimally, we want to try as many
hyperparameters as feasible to reach optimal performance. A
deep CNN can have up to hundreds of convolutional layers e.g.
GoogLe net. Basic CNNs involve convolution-pooling pairs of
layers as their building units followed by an MLP_like part
(dense layers), illustrated in Figure 1. Many architectures
involve a series of convolutions before pooling e.g. VGG16.

D. Activation function

 Throughout this work, we use the Rectified Linear Unit
(ReLU) as the activation function for all convolutional and
fully connected nodes. 𝑓(𝑥) = max⁡(0, 𝑥). ReLUs have a few
significant advantages over other nonlinear activations: 1)
They are computationally efficient since it just chooses
between two numbers. 2) It avoids the problem of vanishing
gradients encountered in deep neural networks trained with
backpropagation. Tanh and sigmoid functions for instance are
highly saturated away from their midpoints leading to
vanishing grafients that slow down the learning. On the other
hand the gradient of the ReLU is 𝑓′(𝑥) = 0 for 𝑥 < 0⁡and is
𝑓′(𝑥) = 1 for 𝑥 > 0. That means that adding layers in your
network does not run into a numerical problem because
multiplying the gradients will neither vanish nor explode. 3) In
practice ReLU shows better performance [6,7].

E. Drop out

To avoid overfitting, there are several methods. One of the
methods is a dropout. The dropout makes a model not to train
all the units at every iteration. The units will be selected
randomly that are trained or not trained. We can decide how
many units are trained or not trained by percentage. The unit
cannot rely on some specific weights because the units are
randomly selected every iteration. This acts as a regularization.
This method can help the model to be efficient in the
computational cost and not to be overfitted.

F. Batch Normalization

The batch normalization standardize the current batch data
by subtracting the mean of current layer’s batch’s activations
and dividing by the standard deviation of the batch’s
activations. Batch normalization’s two main advantages are: 1)
Prevent oversaturation, a problem partially addressed by using
ReLU. 2) According to the original paper [8], the distribution
of the inputs to layers deep in the network may change after
each mini-batch when the weights are updated. This can cause
the learning algorithm to forever chase a moving target
“Internal Covariate Shift”. Batch normalization is introduced
to standardize the inputs by fixing a mean and variance for
each layer which helps in decoupling the change in layers. This
process is supposed to speed up the learning process because it
allows for stability even when using higher learning rates. It
also acts as a regularizer and decreases the need for dropout.

G. Early Stopping

As the learning proceeds, the model can run into over-fitting

the training set, thereby reducing accuracy on test data or data

not previously seen by the model. To avoid this problem, we

utilize early stopping. We take away part of the training set for

validation and calculate the accuracy of classification in the

validation set. As the training accuracy increases, the validation

accuracy increases until it reaches a point where the model

starts to over fit the training. If the model keeps decreasing the

validation accuracy for a number of epochs (set by the patience

parameter), we choose to stop learning and retrieve the most

general model.

H. Optimizers

We will use optimizers to update the weights of the

network. In this project, we used two types of optimizers, the

first one is called stochastic gradient descent (SGD) and the

second one is called adaptive moment estimation (Adam).

SGD is a basic form of gradient descent. SGD updates weights

by subtracting the gradient multiplied learning rate from

previous weights. SGD uses a few samples that are randomly

selected for each iteration. Adam is mixture of the root mean

sqaure prop (RMSProp) and Momentum. Adam updates the

weights with squared gradient that is from calculated an

exponential weighted moving average of the gradient. We tried

both to see how those optimizers affect our MLP and CNN

models.

I. Confusion Matrix

For testing the final model’s performance, we use a
confusion matrix. The confusion matrix is a table presenting
the number of classifications from the predicted class that
match the actual class. Diagonal elements represent correct
predictions, while off-diagonal represent confusions.

Actual

Predicted

Class 1 Class 2 Class 3

Class 1

Class 2

Class 3

Table 1: An example of a 3-class confusion matrix. Green represents correct

predictions, while red represents confusions by the model.

III. RESULTS

A. Multi-Layer Perceptrons(MLPs)

To find the best hyperparameters, we tried several
experiments.

a) Effect of increasing the number of units in the

hidden layers. First, we tried to find the effect of the number

of units in the hidden layers. For this experiment, we used an

MLP model with two hidden layers. Each hidden layer has

different number of units. In the first set we used 10 units in

the first layer and 5 units in the second layer. Second, we

multiplied the number of units by 10. In the third set, we used

100 times more units than the first set. We trained each set for

10 epochs. The loss is getting much lower and the accuracy is

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

getting much higher as the model has more units in each layer,

Fig. 2.

Units (10, 5) (100, 50) (1000, 500)

Test-Acc 66.72% 82.82% 87.86%

Table 2. Accuracy on the test set for different number of the units.

In table 3, the accuracy on the test set is getting much

higher when the number of units is more. We notice that
increasing the number of units helps to get better results. The
first layer decides decision boundaries and the second layer
captures convex regions. If we have more units in each layer,
we can get more decision boundaries and convex regions,
leading to better results.

Units (1000, 500) (2000, 500) (1000, 1000) (2000, 1000)

Test-

Acc
87.37% 88.18% 87.19% 88.05%

Table 3. Accuracy on the test set by different number of the units.

Figure 3. Learning curve and accuracy on the validation set when each layer

has much larger number of the units.

b) Effect of increasing the number of hidden layers.

As seen in Fig. 3, increasing the number of units in the first

layer gets effectively better result than increasing the number

of the units in the second layer. Second, we tried to find the

effect of the number of the hidden layers. For this experiment,

we used three types of MLP models, each model has 2 layers

or 3 layers or 4 layers. As you can see the train accuracy graph

in Fig. 4, the train accuracy is going higher as the number of

layers is increased. However, we noticed that the model that

has more layers can be overfitted. As you can check validation

graph in Fig. 4, the accuracy of the model that has 4 layers

doesn’t keep going higher. Even the accuracy is lower than

before in some epochs. This means that the model is

overfitted. We may need more data to a get better result when

we use many layers. The small amount of data is not enough

to allow the MLP with many layers to learn features.

Figure 4. Accuracy on the train and validation sets.

Number of layers Train Valid Test

2 96.76% 94.40% 87.93%

3 98.20% 95.05% 88.82%

4 99.03% 94.95% 88.97%

Table 4. Accuracy in different number of layers.

In table 4, you can check that the model that has 3 layers is
the proper model to classify the dataset. It has almost similar
test accuracy and highest validation accuracy. Third, I tried to
find best learning rate for training the model.

Learning rate Train Valid Test

0.01 96.8% 94.5% 87.2%

0.1 100.0% 96.4% 91.8%

0.5 99.7% 96.5% 91.3%

Table 5. Accuracy in different learning rate.

c) Effect of different learning rates. In table 5, we

could check that the increased learning rate helps to get better

results. However, it is not always right to use higher learning

rate. When the learning rate is 0.1, the results are better than

when the learning rate is 0.5. In Fif. 5, you can see that the

loss is keep going lower when the learning rate is 0.1

however, the learning curve is not stable when the learning

rate is 0.5. The loss goes to divergence. The 0.5 is too high for

the learning late. We need to carefully choose the learning

rate.

Figure 5. Learning curve in different learning rate.

Figure 2: Learning curve and accuracy on the validation set when each

layer has different number of the units.

d) Effect of dropout. To avoid overfitting and get better

results, there are two ways. One way is dropout, and another

way is batch normalization. As you can see table 6, we could

get higher accuracy on the test set.

Dropout Train Test

0 100.00% 91.78%

1 99.54% 92.03%

Table 6. Accuracy of the models. 0 means that no dropout in the model, 1

means that one dropout used in the model.

The learning curve in Fig. 6 shows that, during training the

model that has no dropout, the loss goes low faster than
another model that has a dropout layer. When you see the
accuracy graph in figure 5, the accuracy from model that has
no dropout reaches 100 % however, the actual best accuracy on
the test set reaches 92.03 % with dropout layer. You can check
that the dropout helps to prevent overfitting by checking lower
accuracy on the train set but higher accuracy on the test set.

Figure 6. Dropout-Learning curve and Accuracy on the train set.

e) Effect of batch normalization. We had similar results

when we used batch normalization. When you see table 7 and

Fig. 7, the results show similar aspects. The best accuracy on

the test set is 92.23 %.

Batch-Norm Train Test

0 100.00% 91.53%

1 99.54% 92.23%

Table 7. Accuracy of the models. 0 means that no batch normalization used in

the model, 1 means that one batch normalization is used in the model.

Figure 7. Batch normalization-Learning curve and Accuracy on the train set.

f) Conclusion. With these results, we found the optimal

hyperparameters. The final model uses 4 layers, each layer

had 2000, 1000, 500, and 250 units. We also included dropout

and batch normalization. With these hyperparameters, we

could reach an accuracy of 92.3% on the test set. Moreover, as

you can see in Fig. 8, we could avoid overfitting even while

using large number of the units and layers by using dropouts

and batch normalizations. As the model is not overfitted, weI

could train the model with more epochs (15). With these

choices, we could get an accuracy 92.94 % on the test set.

Figure 8. Learning curve on the train set and Accuracy on the valid set. Mix

1: no dropout and batch norm (blue line), Mix 2: dropouts and batch norms

included (yellow dashed line)

Figure 9. Confusion matrix on the train set.

As you can see figure 8, the model classifies the letters well

on the train set. However, in figure 9, the model has

difficulties to classify letters on test set especially for class 1

and class 6. Those letters are difficult to distinguish by human

also as you see figure 10.

Figure 10. Confusion matrix on the test set.

Figure 11. Letters in class 1 and class 6.

B. Convolutional Neural Networks (CNNs)

For the following set of experiments, the dense layers
following the convolutional parts of the CNN are set to two
dense layers. The first dense layer has 128 units, the second has
64, both with ReLU activations. The final layer consists of 10
units with a SoftMax activation function for classification. The
output of the network is interpreted as a probability for the
image to belong to each of the 10 classes.

a) Effect of increasing the depth of the CNN. In this

project, we choose to start by changing the number of

convolutional-pooling layer pairs. We test the performance on

3 different CNNs that have 1,2 and 3 layers. Adding a second

layer performs significantly better on both validation and test

sets, see Fig. 12. Although we do not see a big improvement to

validation accuracy by adding a third layer, the test accuracy

goes up by 1%, Table 8.

b) Effect of increasing the number of filters each

layer of CNN. In this experiment we consecituvely halve the

number of filters per layer and monitor the effect on the

accuracy of the classification. The valiation accuracy does not

seem to improve see Fig. 13. However, the test accuracy

significantlly decreases as we decrease number of filters, see

Table 9.

c) Effect of turning batch normalizaton on. We try

turning on batch normalization for two of our trained networks

and investigate the effect. As explained in the MLP section,

we see better results. Accuracy results are presented in table

10.

d) Effect of using dropout. We try different dropout

percentages and placements. First we add dropout to dense

layers only. Then, we add dropout after convolutional layer

too and compare performance. As seen in Fig. 14, adding

dropout does not improve the accuracy significantly. It

slightly improves the test accuracy, Table 10. Plotting the

training accuracy shows how dropout makes sure the model

does not overfit the training data. Dropout of 25% in both

convolution and dense layers drastically decreases the training

fit after the same number of epochs. We are suspecting that

the dropout increase in test accuracy was insignificant because

we had already applied batch normalization which acts as a

regularizer on its own and decreases the need for dropout.

Dropout Training

Accuracy

Validation

Accuracy

Test

Accuracy

(0,0) 99.70% 97.72% 93.14%

Batch

Normalization

Training

Accuracy

Validation

Accuracy

Test

Accuracy

On 98.86% 97.33% 92.17%

Off 99.70% 97.72% 93.14%

Table 10: Performance comparison between different number of layers.

 Validation Accuracy Test Accuracy

(128,64,32) 97.78% 94.14%

(64,32,16) 97.33% 92.17%

(32,16,8) 97.13% 91.79%

Table 9: Performance comparison when using less filters per

layer.

Figure 13: Comparison of CNN performance using different number of

filters per convolutional layer. Legend: [# of filters in layer 1, # of filters

in layer 2, # of filters in layer 3]

 Training

Accuracy

Validation

Accuracy

Test

Accuracy

(128) 99.36% 96.33% 91.59%

(128,64) 99.43% 97.62% 93.66%

(128,64,32) 99.22% 97.78% 94.14%

Table 8: Performance comparison between different number of layers.

Figure 12: Comparison of CL performance of test set classification on

three different architectures

(0.25,0.25) 98.37% 98.08% 93.40%

(0,0.25) 99.35% 97.65% 93.67%

Table 10: Performance comparison for different dropout structures.

Dropout (c,d) denotes a dropout of value (c) after each convolutional

layers and a dropout of value (d) after each dense layer.

Figure 15: Comparison of CNN training curves for different dropouts.

e) Effect of using different optimizers and changing

corresponding learning rates. For further tuning the model,

We try out different optimizer algorithms. We fix the CNN

architecture and only change the algorithm. Accuracy of

predictions are presented in table 11 and Fig. 16. We compare

SGD and Adam optimizers with learning rates (0.01,0.05,0.1)

and (0.001, 0.01) respectively. SGD with the lowest learnng

rate performs significantly worse and plateaus at a lower

accuracy. As we increase learning rate, we see improvement

in classification accuracy. Using Adam optimizer yields

simmilar results but has the advantage of being significantly

faster.

f) Conclusion. After testing out the different

hyperparameter, we further experimented with CNN

architecture and got better performance with an architecture of

3 convolutional layers with 32, 32 ands 64 filters respectively.

We used batch normalization and dropout of 25% after each

dense layer only . We used ReLU activation and Adam

optimizer with learning rate =0.001. The model reaches an

accuracy of 96.5% on test data (not previously seen by it).

Fig. 17 and Fig. 18 present the confusoion matrix.

Training

Accuracy

Validation

Accuracy

Test

Accuracy

99.78% 98.78% 96.50%

Table 12: Final model performance

Figure 17: Confusion Matrix as a measure for performance of the CNN

on the test set. Number of samples in the test set are 10,000.

 Training

Accuracy

Validation

Accuracy

Test

Accuracy

SGD η = 0.01 99.35% 97.65% 93.67%

SGD η = 0.05 99.79% 98.52% 95.59%

SGD η = 0.1 99.83% 98.75% 95.94%

Adam η = 0.001 99.15% 98.23% 94.58%

Adam η = 0.01 99.77% 98.57% 95.87%

Table 11: Performance of different optimizers for CNNs of the

same architecture.

Figure 16: Comparison of CNN performance with different optimizers. Curves not

extending to the full numbers of epochs were early stopped because validation

accuracy was not improving. CNN architecture: [64,32,16] CL, [128,64] DL .with

[0,25%] drop out and batch normalization on.

Figure 14: Comparison of CNN performance with different drop out

setups. The yellow curve represents adding no dropout layers after
convolutions and adding a 25% drop out after every dense layer before

the final layer. The red curve adds a drop out after each CL and DL.

IV. DISCUSSION

Although MLPs are capable of Image classification, they
are not ideal. Since MLPs take a vector as input, flattening of
the image is required which results in losing local spatial
information. On the other hand, CNNs take matrices or tensors
as input so they learn the relation between neighboring pixels.
MLPs are sensitive to translation of the image components,
while a CNN scans the whole image each time it applies a
filter. Therefore CNNs are now the go-to method for prediction
problems with images as input.

Levenberg-Marquardt
We wanted to check how different training algorithms

affect the results. The Levenberg-Marquardt is a combination
of gradient descent and gaussian newton methods. The
Levenberg-Marquardt acts as gradient descent when it is far
from the local minimum just ignoring the curvature of the loss
function. After that, it acts as a gaussian newton as it gets close
to the local minimum. After switching to gaussian newton, it
can focus on the curvature of the loss function. With
information about the curvature of the loss function, the model
can update better parameters. [10]

For this experiment we used simple MLP model that has two

hidden layers. The first layer has 100 units, and the second

layer has 50 units. We assumed that we could get better results

with the Levenberg-Marquardt however, the model with the

SGD got a better result. We got an accuracy of 78.6 % by

using the Levenberg-Marquardt optimizer and an accuracy of

88.6 % by using the SGD optimizer. We assume that initial

weights were not good for the Levenberg-Marquardt. If we try

to use updated weights from other training, then the model

may get better results with the Levenberg-Marquardt because

the training can start better positions to find the minimum

point.

RBF network vs MLP

We also tried RBF (Radial Basis Function) Network. As the

data set is images, the MLP will have better results than the

RBF. Through the hidden layers, the MLP can get redundant

features that make the model train well [11]. However, the

RBF has only one hidden layer. With this hidden layer, the

RBF cannot sufficiently learn features in high dimensional

data set. We could get an accuracy of 72.84 %. If we are using

a simpler and smaller dataset that has low features (low

dimensional), we would better use this RBF network and can

get the results faster than the MLP because RBF has only one

hidden layer.

Figure 19. RBF architecture schematic. [9]

V. CONCLUSION

KMNIST is a complex data set which needs a more
complex architectures than the ones we mentioned to
substantially increase accuracy. However, we are limited by
the available computational resources. For future work, we can
try data augmentation which increases the size of the available
training set and also train the model on different orientations
and shifts of the character.

REFERENCES

[1] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
Learning.

[2] J. Principe, N. Euliano and W. Lefebvre, Neural and adaptive systems.
New York: Wiley, 2000.

[3] “Understanding of Convolutional Neural Network (CNN) — Deep
Learning", Medium, 2021. [Online]. Available:
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-
neural-network-cnn-deep-learning-99760835f148. [Accessed: 24- Oct-
2021].

[4] "GitHub - rois-codh/kmnist: Repository for Kuzushiji-MNIST,
Kuzushiji-49, and Kuzushiji-Kanji", GitHub, 2021. [Online]. Available:
https://github.com/rois-codh/kmnist. [Accessed: 22- Oct- 2021].

[5] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification
with deep convolutional neural networks", Communications of the
ACM, vol. 60, no. 6, pp. 84-90, 2017. Available: 10.1145/3065386.

[6] A. Agarap, "Deep Learning using Rectified Linear Units (ReLU)", 2019.

[7] D. Liu, "A Practical Guide to ReLU", Medium, 2021. [Online].
Available: https://medium.com/@danqing/a-practical-guide-to-relu-
b83ca804f1f7. [Accessed: 27- Oct- 2021].

[8] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift", 2015.

[9] “지능제어 (7) - Radial Basis Function Network(RBFN) - 방사형
구조의 신경망", 네이버 블로그 | ▒Uri-Sarang's Lab▒, 2021. [Online].
Available:
https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId
=9409290274&logNo=221553102800. [Accessed: 27- Oct- 2021].

[10] "Intro to optimization in deep learning: Momentum, RMSProp and
Adam", Paperspace Blog, 2021. [Online]. Available:
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-
adam/. [Accessed: 27- Oct- 2021].

[11] "Radial Basis Function Network", HackerEarth Blog, 2021. [Online].
Available: https://www.hackerearth.com/blog/developers/radial-basis-
function-network/. [Accessed: 27- Oct- 2021].

Figure 18: Confusion Matrix as a measure for performance of the CNN

on the test set. Number of samples in the test set are 54,000.

SUPPLEMENTARY MATERIAL

ID
Convolutional

Layers
Dropout

Batch

Norm
Activation Optimizer

Train

Acc

Val

Acc

Test

Acc

CNN1 [128] 0 FALSE ReLU sgd 99.36% 96.33% 91.59%

CNN2 [128,64] 0 FALSE ReLU sgd 99.43% 97.62% 93.66%

CNN3 [128,64,32] 0 FALSE ReLU sgd 99.22% 97.78% 94.14%

CNN4 [64,32,16] 0 FALSE ReLU sgd 98.86% 97.33% 92.17%

CNN5 [32,16,8] 0 FALSE ReLU sgd 98.26% 97.13% 91.79%

CNN6 [64,32,16] 0 TRUE ReLU sgd 99.70% 97.72% 93.14%

CNN7 [32,16,8] 0 TRUE ReLU sgd 98.57% 96.90% 92.34%

CNN8 [64,32,16] [0.25,0.25] TRUE ReLU sgd 98.37% 98.08% 93.40%

CNN9 [64,32,16] [0,0.25] TRUE ReLU sgd 99.35% 97.65% 93.67%

CNN10 [64,32,16] [0,0.5] TRUE ReLU sgd 99.28% 97.92% 93.47%

CNN11 [64,32,16] [0.5,0.5] TRUE ReLU sgd 95.88% 95.68% 86.64%

CNN12 [64,32,16] [0,0.25] TRUE ReLU
Sgd =

0.05
99.79% 98.52% 95.59%

CNN13 [64,32,16] [0,0.25] TRUE ReLU Sgd = 0.1 99.83% 98.75% 95.94%

CNN14 [64,32,16] [0,0.25] TRUE ReLU
Adam =

0.001
99.15% 98.23% 94.58%

CNN15 [32,64,64] [0,0.25] TRUE ReLU
Adam =

0.001
99.76% 98.80% 96.12%

CNN16 [64,32,16] [0,0.25] TRUE ReLU
Adam =

0.01
99.77% 98.57% 95.87%

CNN17 [64,32,16] [0,0.25] TRUE ReLU
Adam =

0.05
99.55% 98.62% 95.84%

CNN18 [64,32,16] [0,0.25] TRUE ReLU
Adam =

0.1
99.50% 98.43% 94.64%

CNN19 [32,64,64] [0,0.25] TRUE LReLU
Adam =

0.001
98.38% 97.88% 93.42%

CNN20 [32,64,64] [0,0.25] TRUE LReLU
SGD =

0.1
99.82% 98.73% 95.77%

CNN21 [32,32,64] [0,0.25] TRUE ReLU
Adam =

0.001
99.78% 98.78% 96.50%

CNN22 [16,32,64] [0,0.25] TRUE ReLU
Adam =

0.001
99.78% 98.88% 96.16%

CNN23 [32,32,64] [0,0.25] TRUE ReLU
Adam =

0.01
98.82% 97.88% 94.56%

CNN24 [32,32,64] [0,0.25] TRUE ReLU SGD 0.1 99.88% 98.97% 96.16%

CNN25 [32,32,64] [0,0.25] TRUE ReLU SGD 0.05 99.97% 98.98% 96.26%

CNN26 [16,32,32,64] [0,0.25] TRUE ReLU SGD 0.1 99.73% 98.93% 96.01%

CNN27 [16,32,32,64] [0,0.25] TRUE ReLU
ADAM

0.005
99.60% 98.85% 95.91%

CNN28 [32,32,32,64] [0,0.25] TRUE ReLU
ADAM

0.01
98.23% 98.86% 94.39%

Supp. Table 1: All CNN models trained and tested

Supplementary Figures

Supp Fig 1Final CNN model performance

Supp Fig 2 RBF performance Supp Fig 3: Performance of MLP using levenberg-marquardt optimizer

