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Abstract—This work is presented as a project for EEL6814 – Deep 

Learning Course. Over the last few decades, deep neural  

networks have proved very powerful in handling big data. In 

pattern recognition, particularly image problems, deep 

learning’s performance surpasses classical machine learning in 

accuracy. The Multilayer Perceptron (MLP) and the 

Convolutional Neural Network (CNN) are two of the most 

popular deep learning architectures for classification. We 

present the two networks’ performance to classify the Japanese 

KMNIST data set. In this report, we test the performance of 

different MLP and CNN architectures on the data set. We 

further tune hyperparameters and investigate how different 

parameters affect the classification efficiency.  

I. INTRODUCTION 

A. The Multilayer Perceptron (MLP) 

 A multilayer perceptron (MLP) is a type of  
of feedforward artificial neural network (ANN). The MLP 
consists of an input layer, an output layer and at least 
one hidden layers. Each layer has nodes which in general have 
nonlinear activations. MLPs are fully connected meaning that 
each node in one layer connects to every node in the following 
layer through a weight. The weights are learned by the MLP 
using an error back propagation algorithm [1]. 

There are a few hyperparameters involved in an MLP that 
affect performance. First, we need to know the role of the 
number of layers and the number of processing elements (PEs) 
or units in a layer. The PE creates a discriminant function thus 
making a decision boundary and allowing the network to 
represent different classes. Therefore, more layers help the 
MLP to classify easily with fewer numbers of PEs [2]. Second, 
an important hyperparameter is the learning rate. A small 
learning can get the learning stuck at a local minimum, while a 
higher learning rate helps the MLP learns optimal weights 
quickly but risks jumping around minima leading (instable 
learning). We need to select the proper learning rate to reach a 
global minimum.  

B. Convolutional Neural Networks (CNNs) 

The CNN is a neural network that has convolutional layers. 
In the convolutional layers, a filter is used to extract the 
features of the image. The filter is an 𝐿 × 𝐿 matrix  that slides 
over the image sequentially from left to right and from top to 
bottom.  The stride determines how many pixels will be moved 
when the filter moves. The stride affects the size of the output. 

After this process, the filter has 𝐿 × 𝐿 weights and an 
output. The output is called a feature map. Each filter extracts 

features from the output in the previous layer. To get different 
features, we need multiple filters. As we have more layers, we 
can extract more features in the data. However, this process 
can lose edge pixel information. To solve this problem, 
padding is used by adding pixels that have a value of 0 or 1 to 
the sides of the input data [3]. Next step in a CNN is typically a 
pooling layer, which serves in down-sampling the feature maps 

by summarizing the sample with a patch. The job of 
convolutional layers is to extract features of the input. 
Afterwards we add one or more dense fully connected layers. 
The job of the dense layers is to do the actual 
classification/regression problem at hand.  

II. METHODS 

A. Data Preparation 

We download the publicly available data set Kuzushiji-
MNIST (KMNIST) [1]. With advancement in deep learning 
and how well current classifiers work on the  MNIST data set, 
more complicated data set is need to benchmark performance. 
KMNIST is used as a replacement for the MNIST dataset 
(28x28 grayscale, 70,000 images). It consists of 10 classes 
each representing 10 characters of Hiragana, a Japanese writing 
system, see Fig. 1. The data set is divided into 60000 training 
samples and 10000 testing samples. We set aside 10% of the 
training set for model validation as the learning is done. 

 

B. Multi-Layer Perceptrons (MLPs) 

To get optimal performance for classification, we used 
2000 units in the first layer, 1000 units in the second layer, 500 
units in the third layer, 250 units in the fourth layer. We 
included dropouts and batch normalization layers to avoid 
overfitting because this model was easily overfitted on the train 
set with many layers and units.  

C. Convolutional Neural Networks (CNNs) 

Working on this data set, we fix some hyperparameters 
before tuning the rest. Because we care about smaller details in 

 

Figure 1: The 10 classes of KMNIST, with the first column showing 

each character's modern hiragana counterpart. [1] 
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these characters to get classification, we used convolutional 
filters of 3x3 size with stride is 1. We enabled padding to 
match input and output sizes. The pooling layer is of size 2x2, 
with stride 2 and no padding. We set the layer to Maxpooling 
because we care about detecting the brightest spots in the 
image. A CNN architecture can be complex with multiple 
tunable hyperparameters. Optimally, we want to try as many 
hyperparameters as feasible to reach optimal performance. A 
deep CNN can have up to hundreds of convolutional layers e.g. 
GoogLe net. Basic CNNs involve convolution-pooling pairs of 
layers as their building units followed by an MLP_like part 
(dense layers), illustrated in Figure 1. Many architectures 
involve a series of convolutions before pooling e.g. VGG16. 

D. Activation function 

 Throughout this work, we use the Rectified Linear Unit 
(ReLU) as the activation function for all convolutional and 
fully connected nodes. 𝑓(𝑥) = max⁡(0, 𝑥). ReLUs have a few 
significant advantages over other nonlinear activations: 1) 
They are computationally efficient since it just chooses 
between two numbers. 2) It avoids the problem of vanishing 
gradients encountered in deep neural networks trained with 
backpropagation. Tanh and sigmoid functions for instance are 
highly saturated away from their midpoints leading to 
vanishing grafients that slow down the learning. On the other 
hand the gradient of the ReLU is 𝑓′(𝑥) = 0 for 𝑥 < 0⁡and is 
𝑓′(𝑥) = 1 for 𝑥 > 0. That means that adding layers in your 
network does not run into a numerical problem because 
multiplying the gradients will neither vanish nor explode. 3) In 
practice ReLU shows better performance [6,7].  

E. Drop out  

To avoid overfitting, there are several methods. One of the 
methods is a dropout. The dropout makes a model not to train 
all the units at every iteration. The units will be selected 
randomly that are trained or not trained. We can decide how 
many units are trained or not trained by percentage. The unit 
cannot rely on some specific weights because the units are 
randomly selected every iteration. This acts as a regularization. 
This method can help the model to be efficient in the 
computational cost and not to be overfitted.  

F. Batch Normalization  

The batch normalization standardize the current batch data 
by subtracting the mean of current layer’s batch’s activations 
and dividing by the standard deviation of the batch’s 
activations. Batch normalization’s two main advantages are: 1) 
Prevent oversaturation, a problem partially addressed by using 
ReLU.  2) According to the original paper [8], the distribution 
of the inputs to layers deep in the network may change after 
each mini-batch when the weights are updated. This can cause 
the learning algorithm to forever chase a moving target 
“Internal Covariate Shift”.  Batch normalization is introduced 
to standardize the inputs by fixing a mean and variance for 
each layer which helps in decoupling the change in layers. This 
process is supposed to speed up the learning process because it 
allows for stability even when using higher learning rates. It 
also acts as a regularizer and decreases the need for dropout.  

G. Early Stopping 

As the learning proceeds, the model can run into over-fitting 

the training set, thereby reducing accuracy on test data or data 

not previously seen by the model. To avoid this problem, we 

utilize early stopping. We take away part of the training set for 

validation and calculate the accuracy of classification in the 

validation set. As the training accuracy increases, the validation 

accuracy increases until it reaches a point where the model 

starts to over fit the training. If the model keeps decreasing the 

validation accuracy for a number of epochs (set by the patience 

parameter), we choose to stop learning and retrieve the most 

general model.   

H. Optimizers 

We will use optimizers to update the weights of the 

network. In this project, we used two types of optimizers, the 

first one is called stochastic gradient descent (SGD) and the 

second one is called adaptive moment estimation (Adam). 

SGD is a basic form of gradient descent. SGD updates weights 

by subtracting the gradient multiplied learning rate from 

previous weights. SGD uses a few samples that are randomly 

selected for each iteration. Adam is mixture of the root mean 

sqaure prop (RMSProp) and Momentum. Adam updates the 

weights with squared gradient that is from calculated an 

exponential weighted moving average of the gradient. We tried 

both to see how those optimizers affect our MLP and CNN 

models. 

I. Confusion Matrix 

For testing the final model’s performance, we use a 
confusion matrix. The confusion matrix is a table presenting 
the number of classifications from the predicted class that 
match the actual class. Diagonal elements represent correct 
predictions, while off-diagonal represent confusions. 

Actual 

Predicted  

Class 1 Class 2 Class 3 

Class 1    

Class 2    

Class 3    

Table 1: An example of a 3-class confusion matrix. Green represents correct 

predictions, while red represents confusions by the model. 

III. RESULTS 

A. Multi-Layer Perceptrons(MLPs) 

To find the best hyperparameters, we tried several 
experiments. 

a) Effect of increasing the number of units in the 

hidden layers.  First, we tried to find the effect of the number 

of units in the hidden layers. For this experiment, we used an 

MLP model with two hidden layers. Each hidden layer has 

different number of units. In the first set we used 10 units in 

the first layer and 5 units in the second layer. Second, we 

multiplied the number of units by 10. In the third set, we used 

100 times more units than the first set. We trained each set for 

10 epochs. The loss is getting much lower and the accuracy is 
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getting much higher as the model has more units in each layer, 

Fig. 2.  

 
 

Units (10, 5) (100, 50) (1000, 500) 

Test-Acc 66.72% 82.82% 87.86% 

Table 2. Accuracy on the test set for different number of the units. 

 
In table 3, the accuracy on the test set is getting much 

higher when the number of units is more. We notice that 
increasing the number of units helps to get better results. The 
first layer decides decision boundaries and the second layer 
captures convex regions. If we have more units in each layer, 
we can get more decision boundaries and convex regions, 
leading to better results. 

Units (1000, 500) (2000, 500) (1000, 1000) (2000, 1000) 

Test-

Acc 
87.37% 88.18% 87.19% 88.05% 

Table 3. Accuracy on the test set by different number of the units. 

 

 
Figure 3. Learning curve and accuracy on the validation set when each layer 

has much larger number of the units.  
 

b) Effect of increasing the number of hidden layers.  

As seen in Fig. 3, increasing the number of units in the first 

layer gets effectively better result than increasing the number 

of the units in the second layer. Second, we tried to find the 

effect of the number of the hidden layers. For this experiment, 

we used three types of MLP models, each model has 2 layers 

or 3 layers or 4 layers. As you can see the train accuracy graph 

in Fig. 4, the train accuracy is going higher as the number of 

layers is increased. However, we noticed that the model that 

has more layers can be overfitted. As you can check validation 

graph in Fig. 4, the accuracy of the model that has 4 layers 

doesn’t keep going higher. Even the accuracy is lower than 

before in some epochs. This means that the model is 

overfitted. We may need more data to a get better result when 

we use many layers. The small amount of data is not enough 

to allow the MLP with many layers to learn features. 

 

 
Figure 4. Accuracy on the train and validation sets.  

 

Number of layers Train Valid Test 

2 96.76% 94.40% 87.93% 

3 98.20% 95.05% 88.82% 

4 99.03% 94.95% 88.97% 

Table 4. Accuracy in different number of layers. 
 

In table 4, you can check that the model that has 3 layers is 
the proper model to classify the dataset. It has almost similar 
test accuracy and highest validation accuracy. Third, I tried to 
find best learning rate for training the model.  

Learning rate Train Valid Test 

0.01 96.8% 94.5% 87.2% 

0.1 100.0% 96.4% 91.8% 

0.5 99.7% 96.5% 91.3% 

Table 5. Accuracy in different learning rate. 

 

c) Effect of different learning rates.  In table 5, we 

could check that the increased learning rate helps to get better 

results. However, it is not always right to use higher learning 

rate. When the learning rate is 0.1, the results are better than 

when the learning rate is 0.5. In Fif. 5, you can see that the 

loss is keep going lower when the learning rate is 0.1 

however, the learning curve is not stable when the learning 

rate is 0.5. The loss goes to divergence. The 0.5 is too high for 

the learning late. We need to carefully choose the learning 

rate.   

 

 
Figure 5. Learning curve in different learning rate. 

 

 

Figure 2: Learning curve and accuracy on the validation set when each 

layer has different number of the units. 



d) Effect of dropout.  To avoid overfitting and get better 

results, there are two ways. One way is dropout, and another 

way is batch normalization. As you can see table 6, we could 

get higher accuracy on the test set.  

     

Dropout Train Test 

0 100.00% 91.78% 

1 99.54% 92.03% 

Table 6. Accuracy of the models. 0 means that no dropout in the model, 1 

means that one dropout used in the model. 

 
The learning curve in Fig. 6 shows that, during training the 

model that has no dropout, the loss goes low faster than 
another model that has a dropout layer. When you see the 
accuracy graph in figure 5, the accuracy from model that has 
no dropout reaches 100 % however, the actual best accuracy on 
the test set reaches 92.03 % with dropout layer. You can check 
that the dropout helps to prevent overfitting by checking lower 
accuracy on the train set but higher accuracy on the test set. 

 

 
Figure 6. Dropout-Learning curve and Accuracy on the train set.  

 

e) Effect of batch normalization. We had similar results 

when we used batch normalization. When you see table 7 and 

Fig. 7, the results show similar aspects. The best accuracy on 

the test set is 92.23 %.  

Batch-Norm Train Test 

0 100.00% 91.53% 

1 99.54% 92.23% 

Table 7. Accuracy of the models. 0 means that no batch normalization used in 

the model, 1 means that one batch normalization is used in the model. 

 

 
Figure 7. Batch normalization-Learning curve and Accuracy on the train set. 

 

f) Conclusion. With these results, we found the optimal 

hyperparameters. The final model uses 4 layers, each layer 

had 2000, 1000, 500, and 250 units. We also included dropout 

and batch normalization. With these hyperparameters, we 

could reach an accuracy of 92.3% on the test set. Moreover, as 

you can see in Fig. 8, we could avoid overfitting even while 

using large number of the units and layers by using dropouts 

and batch normalizations. As the model is not overfitted, weI 

could train the model with more epochs (15). With these 

choices, we could get an accuracy 92.94 % on the test set. 

 

 
Figure 8. Learning curve on the train set and Accuracy on the valid set. Mix 

1: no dropout and batch norm (blue line), Mix 2: dropouts and batch norms 

included (yellow dashed line) 

 

 
Figure 9. Confusion matrix on the train set. 

 

As you can see figure 8, the model classifies the letters well 

on the train set. However, in figure 9, the model has 

difficulties to classify letters on test set especially for class 1 

and class 6. Those letters are difficult to distinguish by human 

also as you see figure 10. 

 

 
Figure 10. Confusion matrix on the test set. 

 



 
Figure 11. Letters in class 1 and class 6. 

 

B. Convolutional Neural Networks (CNNs) 

For the following set of experiments, the dense layers 
following the convolutional parts of the CNN are set to two 
dense layers. The first dense layer has 128 units, the second has 
64, both with ReLU activations. The final layer consists of 10 
units with a SoftMax activation function for classification. The 
output of the network is interpreted as a probability for the 
image to belong to each of the 10 classes.  

a) Effect of increasing the depth of the CNN. In this 

project, we choose to start by changing the number of 

convolutional-pooling layer pairs. We test the performance on 

3 different CNNs that have 1,2 and 3 layers. Adding a second 

layer performs significantly better on both validation and test 

sets, see Fig. 12. Although we do not see a big improvement to 

validation accuracy by adding a third layer, the test accuracy 

goes up by 1%, Table 8. 

 

 
b) Effect of increasing the number of filters each 

layer of  CNN. In this experiment we consecituvely halve the 

number of filters per layer and monitor the effect on the 

accuracy of the classification. The valiation accuracy does not 

seem to improve see Fig. 13. However, the test accuracy 

significantlly decreases as we decrease number of filters, see 

Table 9. 

 

 
 

c) Effect of turning batch normalizaton on.  We try 

turning on batch normalization for two of our trained networks 

and investigate the effect.  As explained in the MLP section, 

we see better results. Accuracy results are presented in table 

10. 

 

d) Effect of using dropout. We try different dropout 

percentages and placements. First we add dropout to dense 

layers only. Then, we add dropout after convolutional layer 

too and compare performance. As seen in Fig. 14, adding 

dropout does not improve the accuracy significantly. It 

slightly improves the test accuracy, Table 10. Plotting the 

training accuracy shows how dropout makes sure the model 

does not overfit the training data. Dropout of 25% in both 

convolution and dense layers drastically decreases the training 

fit after the same number of epochs. We are suspecting that 

the dropout increase in test accuracy was insignificant because 

we had already applied batch normalization which acts as a 

regularizer on its own and decreases the need for dropout. 

 

Dropout Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

(0,0) 99.70% 97.72% 93.14% 

Batch 

Normalization  

Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

On 98.86% 97.33% 92.17% 

Off 99.70% 97.72% 93.14% 

Table 10: Performance comparison between different number of layers. 

 

 Validation Accuracy Test Accuracy 

(128,64,32) 97.78% 94.14% 

(64,32,16) 97.33% 92.17% 

(32,16,8) 97.13% 91.79% 

Table 9: Performance comparison when using less filters per 

layer. 

 

 
Figure 13: Comparison of CNN performance using different number of 

filters per convolutional layer. Legend: [# of filters in layer 1, # of filters 

in layer 2, # of filters in layer 3] 

 Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

(128) 99.36% 96.33% 91.59% 

(128,64) 99.43% 97.62% 93.66% 

(128,64,32) 99.22% 97.78% 94.14% 

Table 8: Performance comparison between different number of layers. 

 

 
Figure 12: Comparison of CL performance of test set classification on 

three different architectures 



(0.25,0.25) 98.37% 98.08% 93.40% 

(0,0.25) 99.35% 97.65% 93.67% 

Table 10: Performance comparison for different dropout structures. 

Dropout (c,d) denotes a dropout of value (c) after each convolutional 

layers and a dropout of value (d) after each dense layer. 

 

 
Figure 15: Comparison of CNN training curves for different dropouts. 

e) Effect of using different optimizers and changing 

corresponding learning rates. For further tuning the model, 

We try out different optimizer algorithms. We fix the CNN 

architecture  and only change the algorithm. Accuracy of 

predictions are presented in table 11 and Fig. 16. We compare 

SGD and Adam optimizers with learning rates (0.01,0.05,0.1) 

and (0.001, 0.01) respectively. SGD with the lowest learnng 

rate performs significantly worse and plateaus at a lower 

accuracy. As we increase learning rate, we see improvement 

in classification accuracy. Using Adam optimizer yields 

simmilar results but has the advantage of being significantly 

faster.  

 

 

 
f) Conclusion. After testing out the different 

hyperparameter, we further experimented with CNN 

architecture and got better performance with an architecture of 

3 convolutional layers with 32, 32 ands 64 filters respectively. 

We used batch normalization and dropout of 25% after each 

dense layer only . We used ReLU activation and Adam 

optimizer with learning rate =0.001. The model reaches an 

accuracy of  96.5% on test data (not previously seen by it). 

Fig. 17 and Fig. 18 present the confusoion matrix.   

 

Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

99.78% 98.78% 96.50% 

Table 12: Final model performance 

 

 
Figure 17: Confusion Matrix as a measure for performance of the CNN 

on the test set. Number of samples in the test set are 10,000. 

 Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

 

SGD η = 0.01 99.35% 97.65% 93.67%  

SGD η = 0.05 99.79% 98.52% 95.59%  

SGD η = 0.1 99.83% 98.75% 95.94%  

Adam η = 0.001 99.15% 98.23% 94.58%  

Adam η = 0.01 99.77% 98.57% 95.87%  

Table 11: Performance of different optimizers for CNNs of the 

same architecture. 

 
Figure 16: Comparison of CNN performance with different optimizers. Curves not 

extending to the full numbers of epochs were early stopped because validation 

accuracy was not improving. CNN architecture: [64,32,16] CL, [128,64] DL .with 

[0,25%] drop out and batch normalization on.   

 

 
Figure 14: Comparison of CNN performance with different drop out 

setups. The yellow curve represents adding no dropout layers after 
convolutions and adding a 25% drop out after every dense layer before 

the final layer. The red curve adds a drop out after each CL and DL. 



 

IV. DISCUSSION  

Although MLPs are capable of Image classification, they 
are not ideal. Since MLPs take a vector as input, flattening of 
the image is required which results in losing local spatial 
information. On the other hand, CNNs take matrices or tensors 
as input so they learn the relation between neighboring pixels. 
MLPs are sensitive to translation of the image components, 
while a CNN scans the whole image each time it applies a 
filter. Therefore CNNs are now the go-to method for prediction 
problems with images as input.  

Levenberg-Marquardt 
We wanted to check how different training algorithms 

affect the results. The Levenberg-Marquardt is a combination 
of gradient descent and gaussian newton methods. The 
Levenberg-Marquardt acts as gradient descent when it is far 
from the local minimum just ignoring the curvature of the loss 
function. After that, it acts as a gaussian newton as it gets close 
to the local minimum. After switching to gaussian newton, it 
can focus on the curvature of the loss function. With 
information about the curvature of the loss function, the model 
can update better parameters. [10]  

For this experiment we used simple MLP model that has two 

hidden layers. The first layer has 100 units, and the second 

layer has 50 units. We assumed that we could get better results 

with the Levenberg-Marquardt however, the model with the 

SGD got a better result. We got an accuracy of 78.6 % by 

using the Levenberg-Marquardt optimizer and an accuracy of 

88.6 % by using the SGD optimizer. We assume that initial 

weights were not good for the Levenberg-Marquardt. If we try 

to use updated weights from other training, then the model 

may get better results with the Levenberg-Marquardt because 

the training can start better positions to find the minimum 

point. 

RBF network vs MLP 

We also tried RBF (Radial Basis Function) Network. As the 

data set is images, the MLP will have better results than the 

RBF. Through the hidden layers, the MLP can get redundant 

features that make the model train well [11]. However, the 

RBF has only one hidden layer. With this hidden layer, the 

RBF cannot sufficiently learn features in high dimensional 

data set. We could get an accuracy of 72.84 %. If we are using 

a simpler and smaller dataset that has low features (low 

dimensional), we would better use this RBF network and can 

get the results faster than the MLP because RBF has only one 

hidden layer.  

 
Figure 19. RBF architecture schematic. [9] 

V. CONCLUSION 

KMNIST is a complex data set which needs a more 
complex architectures than the ones we mentioned to 
substantially increase accuracy. However, we are limited by 
the available computational resources. For future work, we can 
try data augmentation which increases the size of the available 
training set and also train the model on different orientations 
and shifts of the character.  
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Figure 18: Confusion Matrix as a measure for performance of the CNN 

on the test set. Number of samples in the test set are 54,000. 



 

 

 

 

 

 

 

 

 

 

SUPPLEMENTARY MATERIAL 

 

ID 
Convolutional 

Layers 
Dropout 

Batch 

Norm 
Activation  Optimizer 

Train 

Acc 

Val 

Acc 

Test 

Acc 

CNN1 [128] 0 FALSE ReLU sgd 99.36% 96.33% 91.59% 

CNN2 [128,64] 0 FALSE ReLU sgd 99.43% 97.62% 93.66% 

CNN3 [128,64,32] 0 FALSE ReLU sgd 99.22% 97.78% 94.14% 

CNN4 [64,32,16] 0 FALSE ReLU sgd 98.86% 97.33% 92.17% 

CNN5 [32,16,8] 0 FALSE ReLU sgd 98.26% 97.13% 91.79% 

CNN6 [64,32,16] 0 TRUE ReLU sgd 99.70% 97.72% 93.14% 

CNN7 [32,16,8] 0 TRUE ReLU sgd 98.57% 96.90% 92.34% 

CNN8 [64,32,16] [0.25,0.25] TRUE ReLU sgd 98.37% 98.08% 93.40% 

CNN9 [64,32,16] [0,0.25] TRUE ReLU sgd 99.35% 97.65% 93.67% 

CNN10 [64,32,16] [0,0.5] TRUE ReLU sgd 99.28% 97.92% 93.47% 

CNN11 [64,32,16] [0.5,0.5] TRUE ReLU sgd 95.88% 95.68% 86.64% 

CNN12 [64,32,16] [0,0.25] TRUE ReLU 
Sgd = 

0.05 
99.79% 98.52% 95.59% 

CNN13 [64,32,16] [0,0.25] TRUE ReLU Sgd = 0.1 99.83% 98.75% 95.94% 

CNN14 [64,32,16] [0,0.25] TRUE ReLU 
Adam = 

0.001 
99.15% 98.23% 94.58% 

CNN15 [32,64,64] [0,0.25] TRUE ReLU 
Adam = 

0.001 
99.76% 98.80% 96.12% 

CNN16 [64,32,16] [0,0.25] TRUE ReLU 
Adam = 

0.01 
99.77% 98.57% 95.87% 

CNN17 [64,32,16] [0,0.25] TRUE ReLU 
Adam = 

0.05 
99.55% 98.62% 95.84% 

CNN18 [64,32,16] [0,0.25] TRUE ReLU 
Adam = 

0.1 
99.50% 98.43% 94.64% 

CNN19 [32,64,64] [0,0.25] TRUE LReLU 
Adam = 

0.001 
98.38% 97.88% 93.42% 

CNN20 [32,64,64] [0,0.25] TRUE LReLU 
SGD = 

0.1 
99.82% 98.73% 95.77% 

CNN21 [32,32,64] [0,0.25] TRUE ReLU 
Adam = 

0.001 
99.78% 98.78% 96.50% 

CNN22 [16,32,64] [0,0.25] TRUE ReLU 
Adam = 

0.001 
99.78% 98.88% 96.16% 

CNN23 [32,32,64] [0,0.25] TRUE ReLU 
Adam = 

0.01 
98.82% 97.88% 94.56% 

CNN24 [32,32,64] [0,0.25] TRUE ReLU SGD 0.1 99.88% 98.97% 96.16% 

CNN25 [32,32,64] [0,0.25] TRUE ReLU SGD 0.05 99.97% 98.98% 96.26% 

CNN26 [16,32,32,64] [0,0.25] TRUE ReLU SGD 0.1 99.73% 98.93% 96.01% 

CNN27 [16,32,32,64] [0,0.25] TRUE ReLU 
ADAM 

0.005 
99.60% 98.85% 95.91% 

CNN28 [32,32,32,64] [0,0.25] TRUE ReLU 
ADAM 

0.01 
98.23% 98.86% 94.39% 

Supp. Table 1: All CNN models trained and tested 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figures 

 

 

 
Supp Fig 1Final CNN model performance 

Supp Fig 2 RBF performance     Supp Fig 3: Performance of MLP using  levenberg-marquardt optimizer 

 


